Glutamate receptors form hot spots on apical dendrites of neocortical pyramidal neurons.
نویسندگان
چکیده
Apical dendrites of layer V cortical pyramidal neurons are a major target for glutamatergic synaptic inputs from cortical and subcortical brain regions. Because innervation from these regions is somewhat laminar along the dendrites, knowing the distribution of glutamate receptors on the apical dendrites is of prime importance for understanding the function of neural circuits in the neocortex. To examine this issue, we used infrared-guided laser stimulation combined with whole cell recordings to quantify the spatial distribution of glutamate receptors along the apical dendrites of layer V pyramidal neurons. Focally applied (<10 microm) flash photolysis of caged glutamate on the soma and along the apical dendrite revealed a highly nonuniform distribution of glutamate responsivity. Up to four membrane areas (extent 22 microm) of enhanced glutamate responsivity (hot spots) were detected on the dendrites with the amplitude and integral of glutamate-evoked responses at hot spots being three times larger than responses evoked at neighboring sites. We found no association of these physiological hot spots with dendritic branch points. It appeared that the larger responses evoked at hot spots resulted from an increase in activation of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors and not a recruitment of voltage-activated sodium or calcium conductances. Stimulation of hot spots did, however, facilitate the triggering of both Na+ spikes and Ca(2+) spikes, suggesting that hot spots may serve as dendritic initiation zones for regenerative spikes.
منابع مشابه
Distribution and properties of functional postsynaptic kainate receptors on neocortical layer V pyramidal neurons.
The distribution of glutamate receptor subtypes on the surface of neurons is highly relevant for synaptic transmission and signal processing. In the present study we investigated the location and properties of functional kainate receptors (KARs) on the somatodendritic membrane of rat neocortical layer V pyramidal neurons. Infrared-guided laser stimulation was used to apply glutamate photolytica...
متن کاملModification of Current Transmitted From Apical Dendrite to Soma by Blockade of Voltage- and Ca-Dependent Conductances in Rat Neocortical Pyramidal Neurons
Schwindt, Peter C. and Wayne E. Crill. Modification of current served two types of responses in the soma: spike responses transmitted from apical dendrite to soma by blockade of voltageand during the onset of the iontophoresis, and a subsequent Ca-dependent conductances in rat neocortical pyramidal neurons. graded, tonic current (Schwindt and Crill 1995–1997). We J. Neurophysiol. 78: 187–198, 1...
متن کاملProperties of layer 6 pyramidal neuron apical dendrites.
Layer 6 (L6) pyramidal neurons are the only neocortical pyramidal cell type whose apical dendrite terminates in layer 4 rather than layer 1. Like layer 5 pyramidal neurons, they participate in a feedback loop with the thalamus and project to other cortical areas. Despite their unique location in the cortical microcircuit, synaptic integration in dendrites of L6 neurons has never been investigat...
متن کاملNeocortical long-term potentiation and long-term depression: site of expression investigated by infrared-guided laser stimulation.
The synaptic site of expression of long-term potentiation (LTP) and long-term depression (LTD) is still a matter of debate. To address the question of presynaptic versus postsynaptic expression of neocortical LTP and LTD in a direct approach, we measured the glutamate sensitivity of apical dendrites of layer 5 pyramidal neurons during LTP and LTD. We used infrared-guided laser stimulation to re...
متن کاملThe establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite.
We have performed a morphofunctional analysis of CA1 pyramidal neurons at birth to examine the sequence of formation of GABAergic and glutamatergic postsynaptic currents (PSCs) and to determine their relation to the dendritic arborization of pyramidal neurons. We report that at birth pyramidal neurons are heterogeneous. Three stages of development can be identified: (1) the majority of the neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 3 شماره
صفحات -
تاریخ انتشار 2001